Tensor networks

for classical frustrated spin systems

Jeanne Colbois | Institut Néel

Journée Théorie CPTGA 2025 - 08/10/2025

Tensor networks

for classical frustrated spin systems

Frustrated magnetism

Classical statistical mechanics

Jeanne Colbois | Institut Néel

Journée Théorie CPTGA 2025 - 08/10/2025

Tensor networks

for classical frustrated spin systems

Frustrated magnetism

Classical statistical mechanics

Tensor networks

Jeanne Colbois | Institut Néel

Journée Théorie CPTGA 2025 - 08/10/2025

AcknowledgEments

1

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Andrew Smerald

KIT | Germany

Frédéric Mila

EPFL | Switzerland

Frank Verstraete

Ghent University | Belgium

Laurens Vanderstraeten

Ghent University | Belgium

Samuel Nyckees

EPFL | Switzerland

Afonso Rufino

EPFL | Switzerland

Bram Vanhecke

University of Vienna | Austria

SCOPE

1. Classical frustrated magnetism?

2. Tensor networks for classical statistical mechanics

3. Frustrated magnetism : Ising models as weighted counting problems

4. Some applications & perspectives

2

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Frustrated magnetism

What is it?

Why study it?

Why is it difficult?

ising models of frustrated magnetism 

3

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

ising models of frustrated magnetism 

3

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

ising models of frustrated magnetism 

3

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Magnetic order

Ideal paramagnet

\(q_x\)

\(q_x\)

\(\xi = \infty\)

\(\xi = 0\)

\(q_y\)

\(q_y\)

ising models of frustrated magnetism 

3

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Magnetic order

Ideal paramagnet

\(q_x\)

\(q_x\)

\(\xi = \infty\)

\(\xi = 0\)

\(q_y\)

\(q_y\)

ising models of frustrated magnetism 

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

Competing interactions

\(2100\) sites  :  \(2^{700} \)  ground states!

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

W_{G.S.} \gtrsim 2^{N/3}

Magnetic order

Ideal paramagnet

\(q_x\)

\(q_x\)

\(\xi = \infty\)

\(\xi = 0\)

\(q_y\)

\(q_y\)

3

ising models of frustrated magnetism 

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

Competing interactions

\(2100\) sites  :  \(2^{700} \)  ground states!

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

W_{G.S.} \gtrsim 2^{N/3}

Magnetic order

Ideal paramagnet

\(q_x\)

\(q_x\)

\(\xi = \infty\)

\(\xi = 0\)

\(q_y\)

\(q_y\)

3

S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N}
= 0.501833...

ising models of frustrated magnetism 

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Spin up

Spin down

Competing interactions

\(2100\) sites  :  \(2^{700} \)  ground states!

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

W_{G.S.} \gtrsim 2^{N/3}
S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N}
= 0.501833...
\xi = 1.2506...

A. Sütö, Z. Phys. B 44, (1981)

W. Apel, H.-U. Everts, J. Stat. Mech, (2011)

Magnetic order

Ideal paramagnet

\(q_x\)

\(q_x\)

\(\xi = \infty\)

\(\xi = 0\)

\(q_y\)

\(q_y\)

Spin liquid

\(q_x\)

\(q_y\)

3

Emergent phenomena from the local constraints

4

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

\(\xi = \infty\)

Fennell et al. (2009)

Neutron scattering on Ho2Ti2O7

Emergent phenomena from the local constraints

Ramirez et al (1999) : Dy2Ti2O7

4

Gauss law  \(\nabla \cdot \mathbf{B} = 0\)

Constraint

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

\(\xi = \infty\)

Fennell et al. (2009)

Neutron scattering on Ho2Ti2O7

Emergent phenomena from the local constraints

Ramirez et al (1999) : Dy2Ti2O7

4

Gauss law  \(\nabla \cdot \mathbf{B} = 0\)

Constraint

Classical / quantum electrodynamics

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

\(\xi = \infty\)

Fennell et al. (2009)

Neutron scattering on Ho2Ti2O7

Effective Coulomb interaction \(|F| \propto q^2/r^2\)

Henley (2005, 2010), Castelnovo etal(2008)

Emergent phenomena from the local constraints

5

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Magnetic order

Spin liquids

Emergent phenomena from the local constraints

5

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Magnetic order

Spin liquids

Magnetic moment fragmentation

Brooks-Bartlett et al (2014), Canals et al (2016), Petit et al (2016)

Each spin participates to both phases!

Solving ising models is hard

1D Ising 

Solved exactly 1925

Planar Ising models

Solved exactly 1944 / 1960

Non-planar Ising models : 

no closed forms

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

6

Ising

Onsager

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Solving ising models is hard

1D Ising 

Solved exactly 1925

Planar Ising models

Solved exactly 1944 / 1960

Non-planar Ising models : 

no closed forms

A version of the N-Body probleM

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

6

Ising

Onsager

Counting the number of ground states in spin glasses

#P-complete

Barahona (1982)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Solving ising models is hard

1D Ising 

Solved exactly 1925

Planar Ising models

Solved exactly 1944 / 1960

Non-planar Ising models : 

no closed forms

A version of the N-Body probleM

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

6

Ising

Onsager

Counting the number of ground states in spin glasses

#P-complete

Methods:  

Monte Carlo, series expansion, RG & CFT

Barahona (1982)

Ergodicity issues

Limited to some regimes

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Tensor networks for statistical mechanics

What is a tensor network ?

Tensor networks as compression schemes

Ising models as tensor networks

 

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

7

Extremely efficient classical computing methods

Based on "clever" compression of data

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

7

Extremely efficient classical computing methods

Based on "clever" compression of data

1D quantum

\(S=1\) Heisenberg chain

Symmetry-protected topological phases

...

White (1992), ...

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

7

Extremely efficient classical computing methods

Based on "clever" compression of data

1D quantum

2D quantum and more

\(S=1\) Heisenberg chain

Symmetry-protected topological phases

...

Topological order

Two-dimensional t-J model

...

White (1992), ...

Verstraete et al (2004), Corboz (2014), ....

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

7

Extremely efficient classical computing methods

Based on "clever" compression of data

1D quantum

2D quantum and more

\(S=1\) Heisenberg chain

Symmetry-protected topological phases

...

Topological order

Two-dimensional t-J model

...

Simulation of quantum circuits Challenging quantum supremacy

...

White (1992), ...

Verstraete et al (2004), Corboz (2014), ....

Vidal (2003),

Zhou, Stoudenmire & Waintal (2020), ...

Quantum computing

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

7

Extremely efficient classical computing methods

Based on "clever" compression of data

1D quantum

2D quantum and more

\(S=1\) Heisenberg chain

Symmetry-protected topological phases

...

Topological order

Two-dimensional t-J model

...

Simulation of quantum circuits Challenging quantum supremacy

...

White (1992), ...

Verstraete et al (2004), Corboz (2014), ....

Vidal (2003),

Zhou, Stoudenmire & Waintal (2020), ...

Chemistry, machine learning, mathematics...

Quantum computing

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

7

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Matrix

Rank-3 tensor

"Legs"

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Matrix

Rank-3 tensor

"Legs"

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

"Legs"

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

8

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Type

Notation

Visualization

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

You can group indices:

\(\chi \times\chi \times \chi \times \chi\)

tensor

=

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

Tensor networks notation

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Size of the index = bond dimension = \(\chi\) or \(D\)

You can group indices:

\(\chi \times\chi \times \chi \times \chi\)

tensor

\(\chi^2 \times\chi^2\)

matrix

=

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

8

compressing many-body Wavefunctions

9

Many-body wavefunction

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

9

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

9

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

We want to "factorize" or compress it: 

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

why (When) do We expect the bond dimension to be limited?  

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

We want to "factorize" or compress it: 

9

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

ENTANGLEMENT (area law)

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

Many-body Hilbert space

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

Many-body Hilbert space

\propto L

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto L

We want to "factorize" or compress it: 

why (When) do We expect the bond dimension to be limited?  

9

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto L

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto \mathrm{const}
\propto L

We want to "factorize" or compress it: 

9

why (When) do We expect the bond dimension to be limited?  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto \mathrm{const}
\propto L

9

why (When) do We expect the bond dimension to be limited?  

We want to "factorize" or compress it: 

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

10

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}

10

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

10

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

The partition function is just the exponentiation of a 2x2 matrix!

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\mathcal{Z}_L = (T^L)

10

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

The partition function is just the exponentiation of a 2x2 matrix!

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

1. Diagonalize

\mathcal{Z}_L = (T^L)

10

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

The partition function is just the exponentiation of a 2x2 matrix!

\Lambda^{L} = \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & \left(\frac{\lambda_{-}}{\lambda_{+}}\right)^L \end{pmatrix} \xrightarrow[L \to \infty]{} \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & 0 \end{pmatrix}
\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\mathcal{Z}_L = (T^L)

1. Diagonalize

2. Compute

10

The 1D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Leading eigenvalue!

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

Generalized kronecker \(\delta\) tensor

11

The 2D ising model AS a tensor network

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

\mathcal{Z} =

11

The 2D ising model AS a tensor network

Decomposition & reshaping:

\mathcal{Z} =

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

2^L

11

The 2D ising model AS a tensor network

Decomposition & reshaping:

\mathcal{Z} =

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

2^L

Evaluate the partition function ?

Goldenfeld & Kadanoff, Science, 284 (1999)

12

Three main schemes

\mathcal{Z} =
2^L

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

12

Three main schemes

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

\chi
\mathcal{Z} =
2^L

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

12

Three main schemes

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

\chi
\mathcal{Z} =
2^L

2D classical is "like" 1D quantum

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

12

Three main schemes

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

R. J. Baxter, 1968; T. Nishino, K. Okunishi, 1996;

Corboz et al (2014), ...

\chi
\chi
\mathcal{Z} =
2^L

Building block for quantum problems : algorithms are already optimized

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

12

Three main schemes

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

R. J. Baxter, 1968; T. Nishino, K. Okunishi, 1996;

Corboz et al (2014), ...

Levin & Nave, 2007;  Evenbly & Vidal (2014); Ebel, Kennedy,  Rychkov (2025)....

\chi
\chi
\mathcal{Z} =
2^L

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

12

Three main schemes

Baxter, 1968;  Orús, Vidal, 2008; Zauner-Stauber et. al. 2018;  Fishman et. al 2018  

R. J. Baxter, 1968; T. Nishino, K. Okunishi, 1996;

Corboz et al (2014), ...

Levin & Nave, 2007;  Evenbly & Vidal (2014); Ebel, Kennedy,  Rychkov (2025)....

\rightarrow
\chi
\chi
\chi
\mathcal{Z} =
2^L

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

13

Observables 

\(\langle O \rangle= \) 

Local observable:

\(\mathcal{Z}\)

Correlations:

\xi = - \ln \frac{\lambda_2}{\lambda_1}

Correlation length:

\(\langle O_i O_j \rangle =\) 

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Applications : Discrete spins

2D square lattice Ising model

14

Orús, Vidal, PRB 78, 2008  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Applications : Discrete spins

2D square lattice Ising model

14

Orús, Vidal, PRB 78, 2008  

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

H = - \sum_{\vec{r}} \cos \left(\frac{2\pi}{3}(n_{\vec{r}+\vec{x}}-n_{\vec{r}}+\Delta)\right)\\ - \sum_{\vec{r}}\cos \left(\frac{2\pi}{3}(n_{\vec{r}+\vec{y}}-n_{\vec{r}})\right)
T
\Delta
\nu_x = 2/3\quad \nu_y = 1 \\ z = 3/2 \quad \bar{\beta} = 2/3

Nyckees, JC, Mila, NPB (2021)

2D chiral Potts model

Frustrated magnets

A simple case

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

15

A simple case

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

15

A simple case

Vanhecke, JC et al (2021)

Fails in the presence of frustration and macroscopic g.s. degeneracy

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

15

A simple case

Vanhecke, JC et al (2021)

Fails in the presence of frustration and macroscopic g.s. degeneracy

B. Vanhecke, JC, et al. PRR 3, (2021)

\(\rightarrow\) in spin glasses

 

 

\(\rightarrow \) in translation-invariant frustrated Ising models

\(\rightarrow\) in lattice gas models

\(\rightarrow\) in frustrated XY models 

S. A. Akimenko, PRE 107, (2023)

F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

15

The problem 

16

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

The problem 

16

Numerical problem

Cancellation of small and large factors

\tilde{t} = e^{\beta \frac{E_{\text{G.S.}}}{N_{\text{bonds}}}} t = \begin{pmatrix} e^{-\frac{4}{3}\beta J} & e^{\frac{2}{3}\beta J}\\ e^{\frac{2}{3}\beta J} & e^{-\frac{4}{3}\beta J}\end{pmatrix}

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

\(\rightarrow\) precision?

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

\(\rightarrow\) log?

\mathcal{Z}_{\triangle} = \tilde{t}^3

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

The problem 

16

Numerical problem

Cancellation of small and large factors

\tilde{t} = e^{\beta \frac{E_{\text{G.S.}}}{N_{\text{bonds}}}} t = \begin{pmatrix} e^{-\frac{4}{3}\beta J} & e^{\frac{2}{3}\beta J}\\ e^{\frac{2}{3}\beta J} & e^{-\frac{4}{3}\beta J}\end{pmatrix}

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

\(\rightarrow\) precision?

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

\(\rightarrow\) log?

\mathcal{Z}_{\triangle} = \tilde{t}^3

Bad gauge

The transfer matrix is badly conditioned (e.g. not hermitian, ...)

W. Tang et al, (2024, 2025)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

The problem 

16

Numerical problem

Ground-state rule

Cancellation of small and large factors

\tilde{t} = e^{\beta \frac{E_{\text{G.S.}}}{N_{\text{bonds}}}} t = \begin{pmatrix} e^{-\frac{4}{3}\beta J} & e^{\frac{2}{3}\beta J}\\ e^{\frac{2}{3}\beta J} & e^{-\frac{4}{3}\beta J}\end{pmatrix}

Failure to minimize simultaneously all local Hamiltonians.

B. Vanhecke, JC, et al. PRR 3, (2021)

F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

\(\rightarrow\) precision?

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

\(\rightarrow\) log?

\mathcal{Z}_{\triangle} = \tilde{t}^3

Bad gauge

The transfer matrix is badly conditioned (e.g. not hermitian, ...)

W. Tang et al, (2024, 2025)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

The problem 

16

Numerical problem

Ground-state rule

Cancellation of small and large factors

\tilde{t} = e^{\beta \frac{E_{\text{G.S.}}}{N_{\text{bonds}}}} t = \begin{pmatrix} e^{-\frac{4}{3}\beta J} & e^{\frac{2}{3}\beta J}\\ e^{\frac{2}{3}\beta J} & e^{-\frac{4}{3}\beta J}\end{pmatrix}

Failure to minimize simultaneously all local Hamiltonians.

B. Vanhecke, JC, et al. PRR 3, (2021)

F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

\(\rightarrow\) precision?

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

\(\rightarrow\) log?

\mathcal{Z}_{\triangle} = \tilde{t}^3

Bad gauge

The transfer matrix is badly conditioned (e.g. not hermitian, ...)

W. Tang et al, (2024, 2025)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

17

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

18

17

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Dimer coverings!

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

17

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Dimer coverings!

\(2 \times 2 \times 2\)

\(=0\)

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

17

Ground state: 

Simple case : triangular lattice Ising antiferromagnet

Dimer coverings!

\(2 \times 2 \times 2\)

\(=0\)

Vanhecke, JC et al (2021)

Kasteleyn, (1961), Fisher (1966)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

17

Ground state: 

Vanhecke, JC et al (2021)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

Dimer coverings!

\(2 \times 2 \times 2\)

\(=0\)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

17

Finite temperature

\(2 \times 2 \times 2\)

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

18

\(2 \times 2 \times 2\)

\(=e^{-\beta J}\)

Same structure and size

Different entries

Finite temperature

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

18

\(2 \times 2 \times 2\)

\(=e^{-\beta J}\)

Same structure and size

Different entries

Finite temperature

Vanhecke, JC et al (2021)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

18

More complex Ising models? 

19

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

More complex Ising models? 

H =
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

19

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

More complex Ising models? 

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

19

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

More complex Ising models? 

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

19

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

More complex Ising models? 

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

Can we still find the constraint?

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

19

20

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

20

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

20

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

1. Split with clusters that overlap

H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

20

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

1. Split with clusters that overlap

2. Minimize : G.S. lower-bound 

\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)
H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

20

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

\max_{\alpha}\,\,\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)

3.  Maximize w.r.t the weights:

1. Split with clusters that overlap

2. Minimize : G.S. lower-bound 

\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)
H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

20

Ising models as weigthed counting problems

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Nagy et al; PRE 109 (2024)

Essential idea : Anderson bounds

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

LINEAR PROGRAM:

\max_{\alpha}\,\,\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)

3.  Maximize w.r.t the weights:

1. Split with clusters that overlap

2. Minimize : G.S. lower-bound 

\min_{\vec{\sigma}|_c} H_c^{\alpha}(\vec{\sigma}|_c)
H = \sum_{c} H_c^{\alpha}(\vec{\sigma}|_c)

Obtain the ground states by tiling!

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Applications and perspectives

Three unexpected spin liquid phases

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

21

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

21

Three unexpected spin liquid phases

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

21

Three unexpected spin liquid phases

JC, B. Vanhecke et. al., PRB 106 (2022)

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

21

JC, B. Vanhecke et. al., PRB 106 (2022)

Three unexpected spin liquid phases

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

22

A cascade of topological phase transitions

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

An infinite series of plateaus

in the ratios of densities of 2 types of system-spanning strings

Perspectives

23

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Tensor network methods

"Classical" and quantum frustrated magnetism

Perspectives

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Consequences for studying 2D quantum many-body problems ?

Dealing with non-local constraints ?

Combining with Monte Carlo methods? 

Wei Tang et al (2024, 2025)

Châtelain & Gendiar (2020)

Frias-Perez et al (2023)

Tensor network methods

"Classical" and quantum frustrated magnetism

23

Perspectives

Consequences for studying 2D quantum many-body problems ?

Dealing with non-local constraints ?

Range of frustration: hard versus "weak" frustration ?

Combining with Monte Carlo methods? 

Wei Tang et al (2024, 2025)

Châtelain & Gendiar (2020)

Frias-Perez et al (2023)

Ronceray & Le Floch (2020)

Interpretation of "classical" entanglement ?

Carignano et al (2024)

Tensor network methods

"Classical" and quantum frustrated magnetism

A route to quantum-classical correspondences?

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Allegra et al (2016)

23

Take-home message

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Take-home message

Tensor networks:

a way to capture complex behavior in statistical mechanics

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Take-home message

Tensor networks:

a way to capture complex behavior in statistical mechanics

Constrained models in statistical mechanics shed light

on tensor network methods (and challenges)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Take-home message

Tensor networks:

a way to capture complex behavior in statistical mechanics

Thank you for your attention!

Constrained models in statistical mechanics shed light

on tensor network methods (and challenges)

COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM |  10.2025

Bonus slides

Wikipedia, CC BY license

Image compression

Julia Yeomans

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Image compression

Image compression

Always ask : why do I expect the bond dimension to be limited?  

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Tensor networks for frustrated classical Ising models

By Jeanne Colbois

Tensor networks for frustrated classical Ising models

Invited talk at CPTGA workshop

  • 23