IPS Meeting 2024 | NTU Singapore | 2024/09/24
Jeanne Colbois
NUS & Majulab
Nicolas Laflorencie
Laboratoire de Physique Théorique
Toulouse, France
Fabien Alet
1
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(|\psi(x)|^2\)
1
Jump
Random on-site
energy
\(|\psi(x)|^2\)
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics, 10 (1961)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(h\)
\(h\)
\(\forall h , \, \forall E \) : localization !!
(1D, NN)
\(-h\)
\(h\)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
2
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
2
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
See Anderson, 1958
"An example of a real physical system with an infinite number of degrees of freedom [...] in which the approach to equilibrium is simply impossible."
2
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
See Anderson, 1958
Effect of interactions?
1. Many-body Anderson localization in \(U(1)\) symmetric spin chain
2. Ergodic instability at weak disorder
"An example of a real physical system with an infinite number of degrees of freedom [...] in which the approach to equilibrium is simply impossible."
C.f. Basko, Aleiner, Altshuler (2006) and many, many others
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
Anderson, Phys. Rev. 109, 1492 (1958)
3
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
1 fermion
Charge is conserved
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
Anderson, Phys. Rev. 109, 1492 (1958)
3
Jordan-Wigner
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Magnetic field
Spin-flip
1 fermion
1 spin up
Magnetization is conserved
Charge is conserved
\(-h\)
\(h\)
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
4
Jordan-Wigner
Anderson, Phys. Rev. 109, 1492 (1958)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(L/2\) fermions
\(\sum_i S_i^{z} = 0\)
Magnetization is conserved
Charge is conserved
\(-h\)
\(h\)
Magnetic field
Spin-flip
Jordan-Wigner
\(L/2\) fermions
\(\sum_i S_i^{z} = 0\)
Magnetic field
Spin-flip
Magnetization is conserved
Charge is conserved
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
Anderson, Phys. Rev. 109, 1492 (1958)
4
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(-h\)
\(h\)
5
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Crowley and Chandran, PRR (2020), J. C., N. Laflorencie, PRB (2023)
\(\epsilon\)
\(\xi(\epsilon, W)\)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
5
Crowley and Chandran, PRR (2020), J. C., N. Laflorencie, PRB (2023)
\(\epsilon\)
\(\xi(\epsilon, W)\)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(h\)
5
Crowley and Chandran, PRR (2020), J. C., N. Laflorencie, PRB (2023)
\(\epsilon\)
\(\xi(\epsilon, W)\)
\(h\)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
5
Crowley and Chandran, PRR (2020), J. C., N. Laflorencie, PRB (2023)
Averaging over the density of states
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
6
\(C_{ij}^{\alpha\alpha} = \langle S_i^{\alpha} S_{j}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{j}^{\alpha} \rangle\)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(C_{ij}^{\alpha\alpha} = \langle S_i^{\alpha} S_{j}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{j}^{\alpha} \rangle\)
Typical value
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
Disorder
average
6
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(C_{ij}^{\alpha\alpha} = \langle S_i^{\alpha} S_{j}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{j}^{\alpha} \rangle\)
Typical value
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
Disorder
average
Flattening due to PBC
6
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(C_{ij}^{\alpha\alpha} = \langle S_i^{\alpha} S_{j}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{j}^{\alpha} \rangle\)
Typical value
Flattening due to PBC
Bulk & mid-chain : same correlation length
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
Disorder
average
6
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(C_{ij}^{\alpha\alpha} = \langle S_i^{\alpha} S_{j}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{j}^{\alpha} \rangle\)
Typical value
Flattening due to PBC
Bulk & mid-chain : same correlation length
Similar trends
\(\xi_x \approx 2 \xi_z\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
Disorder
average
6
J. C., N. Laflorencie, PRB (2023)
7
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
J. C., N. Laflorencie, PRB (2023)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Some eigenstate
\(|\langle S_i^{z}\rangle| < 1/2\)
7
Some eigenstate
J. C., N. Laflorencie, PRB (2023)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(|\langle S_i^{z}\rangle| < 1/2\)
7
Some eigenstate
J. C., N. Laflorencie, PRB (2023)
\(|\langle S_i^{z}\rangle| < 1/2\)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
8
9
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Toy model:
SPIN FREEZING !
CHAIN BREAKING !
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
512 sites
9
Delocalized:
10
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Attraction /Repulsion
Ising
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
10
Polynomial \(\rightarrow\) Exponential
Simulations of MBL lattice models | Fabien Alet | Cargese
Attraction /Repulsion
Ising
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
See for instance Pietracaprina et al., SciPost Phys. 5, 045
10
Attraction /Repulsion
Ising
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Polynomial \(\rightarrow\) Exponential
Simulations of MBL lattice models | Fabien Alet | Cargese
See for instance Pietracaprina et al., SciPost Phys. 5, 045
In the Anderson basis:
Anderson orbitals \(m\)
Tendency to delocalize
10
Ground-state : well understood
11
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Anderson localized
(insulator)
disorder \(h \)
Interaction \(\Delta\)
C.f. Basko, Aleiner, Altshuler (2006) and many, many others
Recent review : Sierant et al., arXiv:2403.07111
High energy eigenstates!!
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Finite-size numerics show a transition e.g. in extreme magnetization
Anderson localized
(insulator)
disorder \(h \)
Ergodic
("metal")
Interaction \(\Delta\)
Many-body localized
Other probes: gap ratio, fidelity, participation entropy, entanglement entropy...
11
C.f. Basko, Aleiner, Altshuler (2006) and many, many others
Recent review : Sierant et al., arXiv:2403.07111
High energy eigenstates!!
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Finite-size numerics show a transition e.g. in extreme magnetization
Anderson localized
(insulator)
disorder \(h \)
Ergodic
("metal")
Interaction \(\Delta\)
Many-body localized
Other probes: gap ratio, fidelity, participation entropy, entanglement entropy...
11
C.f. Basko, Aleiner, Altshuler (2006) and many, many others
Recent review : Sierant et al., arXiv:2403.07111
\(\delta_{\min}^{\rm typ} \rightarrow 1/2\)
\(\delta_{\min}^{\rm typ} \rightarrow 0\)
High energy eigenstates!!
Recent review : Sierant et al., arXiv:2403.07111
"Standard model"
12
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
C.f. Basko, Aleiner, Altshuler (2006) and many, many others
High energy eigenstates!!
13
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
Anderson localized
(insulator)
disorder \(h \)
Ergodic
("metal")
Interaction \(\Delta\)
Many-body localized
?
Recent review : Sierant et al., arXiv:2403.07111
C.f. Basko, Aleiner, Altshuler (2006) and many, many others
Crowley and Chandran 2020
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
High energy eigenstates!!
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
14
After extrapolation
High energy eigenstates!!
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
14
After extrapolation
High energy eigenstates!!
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
14
After extrapolation
High energy eigenstates!!
15
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
De Roeck & Huveneers 2017, Luitz, De Roeck & Huveneers 2017, Thiery et al 2018
Adapted from Szoldra et at (2024)
Rare regions of effective weak disorder will always happen in the limit of large systems.
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
De Roeck & Huveneers 2017, Luitz, De Roeck & Huveneers 2017, Thiery et al 2018
Adapted from Szoldra et at (2024)
Rare regions of effective weak disorder will always happen in the limit of large systems.
They are thermal.
15
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
If LIOM characteristic length \(\zeta > \zeta_{\mathrm{av.}}\) :
runaway avalanche is triggered and the system thermalizes.
De Roeck & Huveneers 2017, Luitz, De Roeck & Huveneers 2017, Thiery et al 2018; Crowley and Chandran 2020
Adapted from Szoldra et at (2024)
Rare regions of effective weak disorder will always happen in the limit of large systems.
They are thermal.
15
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5)
16
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
\(\Delta/J\)
\(h/J \)
Anderson localized
(insulator)
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
\(\delta_{\min} \rightarrow 1/2\)
\(\delta_{\min} \sim L^{-\gamma}\rightarrow 0\)
17
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
AL
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
ETH
The longitudinal correlations decay as a power-law
The transverse still decay exponentially
18
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
1
0.75
0.5
0.25
0
0
1
2
3
4
5
6
7
8
9
10
\(\Delta/J\)
\(h/J \)
18
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
On the MBL side
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
On the MBL side
Does it stop?
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024); JC, F. Alet. N. Laflorencie, in preparation.
18
CHAIN BREAKING!
disorder \(h \)
Interaction \(\Delta\)
@ High energy!
19
COLBOIS | INTERACTION DRIVEN INSTABILITIES | IPS MEETING | 09.2024
SPIN FREEZING!
\(L/2\) fermions
\(S_z = 0\)
Anderson
No growth
of entanglement
J. H. Bardarson, F. Pollmann, and J. E. Moore, PRL 109, 017202 (2012)
M. Znidaric, T. Prosen, and P. Prelovsek PRB 77, 064426 (2008)
Log growth
of entanglement
Initial \(S^z\) basis random product state
+
TEBD
W = 5
W
Ergodic
MBL
2016
Finite L
W
Ergodic
MBL phase/ regimes?
Prethermal
regime?
2023
\(L\) increases
Anderson chain / XX chain
Heisenberg chain
Fréchet
\(10^5 \) samples
Fréchet
\(10^5 \) samples
Question:
Does the seed hybridize (absorb) the l-bits?
Answer:
it depends on
(1) \(V_{ij}\) the matrix element coupling the seed to the l-bit
(2) \(1/ \rho\) the level spacing.
Typically \(V_{ij} \gg 1/\rho\).
The challenge is to quantify this, see Crowley and Chandran.
Essentially:
\(J_{\alpha}\) should be large enough.