Jeanne Colbois - Institut Néel - Grenoble - France
Quantum thermalization in closed systems : from theory to experiments | Garching | 13 May 2025
Nicolas Laflorencie
Fabien Alet
LPT Toulouse - France
Jeanne Colbois - Institut Néel - Grenoble - France
Quantum thermalization in closed systems : from theory to experiments | Garching | 13 May 2025
Nicolas Laflorencie
Fabien Alet
LPT Toulouse - France
A limited introduction and two short stories
\(L/2\) fermions
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
COLBOIS | INSTABILITIES AND MBL | 05.2025
1
\(-h\)
\(h\)
Spinless fermions in random potential with uniform distribution
\(L/2\) fermions
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
COLBOIS | INSTABILITIES AND MBL | 05.2025
1
\(-h\)
\(h\)
Spinless fermions in random potential with uniform distribution
Single particle localization length:
energy
3
3
2
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
3
3
2
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
3
3
2
COLBOIS | INSTABILITIES AND MBL | 05.2025
In the Anderson basis:
Anderson orbitals \(m\)
Intuition : Interactions will delocalize
Attraction / repulsion
\(-h\)
\(h\)
at high energy
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
Attraction / repulsion
\(\epsilon = 0\)
1. In the ground state ?
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
Attraction / repulsion
\(\epsilon = 0\)
1. In the ground state ?
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
Attraction / repulsion
\(\epsilon = 0\)
1. In the ground state ?
2. At finite energy density ?
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
Attraction / repulsion
\(\epsilon = 0\)
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
?
Anderson insulator
disorder \(h \)
\(\Delta\)
?
?
?
Ergodic
Many-body localized
2. At finite energy density ?
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\sum_i S_i^{z} = 0\)
Attraction / repulsion
ISING INTERACTION
\(\epsilon = 0\)
Jordan-Wigner
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
?
Anderson insulator
disorder \(h \)
\(\Delta\)
?
?
?
Ergodic
Many-body localized
2. At finite energy density ?
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\sum_i S_i^{z} = 0\)
ISING INTERACTION
\(\epsilon = 0\)
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
?
Anderson insulator
disorder \(h \)
\(\Delta\)
?
?
?
Ergodic
Many-body localized
2. At finite energy density ?
TODAY
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\sum_i S_i^{z} = 0\)
ISING INTERACTION
\(\epsilon = 0\)
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
?
Anderson insulator
disorder \(h \)
\(\Delta\)
?
?
?
Ergodic
Many-body localized
2. At finite energy density ?
TODAY
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\sum_i S_i^{z} = 0\)
ISING INTERACTION
\(\epsilon = 0\)
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
?
Anderson insulator
disorder \(h \)
\(\Delta\)
?
?
?
Ergodic
Many-body localized
2. At finite energy density ?
TODAY
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\sum_i S_i^{z} = 0\)
ISING INTERACTION
\(\epsilon = 0\)
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
Anderson insulator
disorder \(h \)
\(\Delta\)
?
Ergodic
Many-body localized
2. At finite energy density ?
TODAY
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
3
3
3
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\sum_i S_i^{z} = 0\)
ISING INTERACTION
\(\epsilon = 0\)
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
Anderson insulator
disorder \(h \)
\(\Delta\)
?
Ergodic
Many-body localized
2. At finite energy density ?
TODAY
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012); Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
1. In the ground state ?
CHALLENGING!
2015
2018
2019
eigenstate properties (\(t \rightarrow \infty\)) in the XXZ chain
Thermal
Many-body localized
Disorder
Two probes and a phenomenological model
\(\Delta > 0\)
Integrable
2015
2018
2019
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
3
3
4
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Gap ratio:
3
3
4
P. Jacquod, D. L. Shepelyansky, PRL 79, 1837 (1997) [... a lot of works ...]
O. Giraud, N. Macé, E. Vernier, F. Alet, PRX 12, 011006 (2022)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Gap ratio:
3
3
4
P. Jacquod, D. L. Shepelyansky, PRL 79, 1837 (1997) [... a lot of works ...]
O. Giraud, N. Macé, E. Vernier, F. Alet, PRX 12, 011006 (2022)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
GOE = Ergodic
Probes:
Gap ratio:
3
3
4
P. Jacquod, D. L. Shepelyansky, PRL 79, 1837 (1997) [... a lot of works ...]
O. Giraud, N. Macé, E. Vernier, F. Alet, PRX 12, 011006 (2022)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
GOE = Ergodic
Poisson = localized
Probes:
Gap ratio:
3
3
4
P. Jacquod, D. L. Shepelyansky, PRL 79, 1837 (1997) [... a lot of works ...]
O. Giraud, N. Macé, E. Vernier, F. Alet, PRX 12, 011006 (2022)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Gap ratio:
A. Pal, D. Huse, PRB 82, 174411 2010
(See series of works by V. Oganesyan, A. Pal, D. Huse, 2007-2010)
Exact diagonalization
disorder
gap ratio
3
3
4
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Gap ratio:
A. Pal, D. Huse, PRB 82, 174411 2010
(See series of works by V. Oganesyan, A. Pal, D. Huse, 2007-2010)
Exact diagonalization
disorder
gap ratio
3
3
4
GOE
Ergodic
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Gap ratio:
A. Pal, D. Huse, PRB 82, 174411 2010
(See series of works by V. Oganesyan, A. Pal, D. Huse, 2007-2010)
Exact diagonalization
disorder
gap ratio
3
3
4
Poisson
GOE
Ergodic
3
3
5
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Khemani et al, PRX 7 (2017)
3
3
5
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Disorder \(h\)
\(S_T = (L-\log_2(e))/2\)
\(S = -\mathrm{Tr} \rho_A \ln \rho_A\)
A
Khemani et al, PRX 7 (2017)
Volume-law at weak disorder
3
3
5
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
\(S_T = (L-\log_2(e))/2\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Disorder \(h\)
\(S = -\mathrm{Tr} \rho_A \ln \rho_A\)
A
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Area-law at strong disorder
Volume-law at weak disorder
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
3
3
5
Khemani et al, PRX 7 (2017)
Disorder \(h\)
\(S_T = (L-\log_2(e))/2\)
\(S = -\mathrm{Tr} \rho_A \ln \rho_A\)
A
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
AL : Anderson orbitals
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
AL : Anderson orbitals
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
\(L\) conserved quantities
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
AL : Anderson orbitals
\(L\) conserved quantities
?
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
When MBL : \(J_{i,...,j} \propto e^{-\frac{-|i-j|}{\zeta}}\)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
When MBL : \(J_{i,...,j} \propto e^{-\frac{-|i-j|}{\zeta}}\)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
- out of equilibrium dynamics
M. Schreiber et al. Science (2015)
- log-growth of EE
J. H. Bardarson et al, PRL 109, 017202 (2012)
M. Znidaric et al PRB 77, 064426 (2008)
When MBL : \(J_{i,...,j} \propto e^{-\frac{-|i-j|}{\zeta}}\)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
- out of equilibrium dynamics
M. Schreiber et al. Science (2015)
- log-growth of EE
J. H. Bardarson et al, PRL 109, 017202 (2012)
M. Znidaric et al PRB 77, 064426 (2008)
- analytical arguments / proof(s)
- Basko, Aleiner, Altschuler (2006), Ros, Müller (2017), Crowley, Chandran (2022),
- Imbrie (2016), ...
When MBL : \(J_{i,...,j} \propto e^{-\frac{-|i-j|}{\zeta}}\)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
6
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
- out of equilibrium dynamics
M. Schreiber et al. Science (2015)
- log-growth of EE
J. H. Bardarson et al, PRL 109, 017202 (2012)
M. Znidaric et al PRB 77, 064426 (2008)
- analytical arguments / proof(s)
Nature / behavior of the transition ?
- Basko, Aleiner, Altschuler (2006), Ros, Müller (2017), Crowley, Chandran (2022),
- Imbrie (2016), ...
When MBL : \(J_{i,...,j} \propto e^{-\frac{-|i-j|}{\zeta}}\)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
Strong finite-size effects
Ultraslow dynamics
Theory of instabilities
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
Strong finite-size effects
Ultraslow dynamics
Theory of instabilities
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
Strong finite-size effects
Ultraslow dynamics
Theory of instabilities
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
Strong finite-size effects
Ultraslow dynamics
Theory of instabilities
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
7
Gap Ratio
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
7
Challenging finite-size scaling
\(h/L\)
\(h\)
Suntajs et al (2020)
(arXiv v1-v2)
Gap Ratio
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
7
Sierant, Lewenstein, Zakrewski PRL (2020)
Suntajs et al (2020)
(arXiv v1-v2)
Challenging finite-size scaling
Disorder \(h\)
Disorder \(h\)
\(h/L\)
\(h\)
Gap Ratio
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
7
Sierant, Lewenstein, Zakrewski PRL (2020)
Challenging finite-size scaling
Disorder \(h\)
Disorder \(h\)
\(h/L\)
\(h\)
Entanglement entropy
& other probes
JC, F. Alet, N. Laflorencie, PRL (2024)
Suntajs et al (2020)
(arXiv v1-v2)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
3
3
8
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
Morningstar et al, PRB 105 (2022)
3
3
8
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
Morningstar et al, PRB 105 (2022)
avalanche instability
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
Small ergodic region triggers runaway delocalization
3
3
8
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
Morningstar et al, PRB 105 (2022)
many-body resonances
3
3
8
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
MBL is destabilized by resonances between localized eigenstates finite-size crossover
avalanche instability
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
Morningstar et al, PRB 105 (2022)
avalanche instability
3
3
8
many-body resonances
here - end to end QMI
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
Morningstar et al, PRB 105 (2022)
avalanche instability
3
3
8
many-body resonances
here - end to end QMI
gap ratio
and minimum gap
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
See Nicolas' talk for a discussion
Morningstar et al, PRB 105 (2022)
avalanche instability
3
3
8
many-body resonances
here - end to end QMI
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
?
Anderson insulator
disorder \(h \)
Ising interaction \(\Delta\)
Ergodic
Many-body localized
?
?
?
ISING INTERACTION
Interactions give rise to MBL
(unbounded Hamiltonians)
COLBOIS | INSTABILITIES AND MBL | 05.2025
9
\(\Delta\)
\(\Delta_c\)
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)
Interactions give rise to MBL
(unbounded Hamiltonians)
\(\Delta\)
\(\Delta_c\)
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)
Lin et al, Scipost (2018)
LeBlond et al. (2021)
Hopjan, Orso, Heidrich-Meisner (2021)
COLBOIS | INSTABILITIES AND MBL | 05.2025
9
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Interactions give rise to MBL
(unbounded Hamiltonians)
\(\Delta\)
\(\Delta_c\)
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)
Lin et al, Scipost (2018)
LeBlond et al. (2021)
Hopjan, Orso, Heidrich-Meisner (2021)
COLBOIS | INSTABILITIES AND MBL | 05.2025
9
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
(for standard observables)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
10
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Rare regions of weak disorder trigger the delocalization transition
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
10
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Adapted from Szoldra et at (2024)
Rare regions of weak disorder trigger the delocalization transition
\(n_0\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
10
Rare regions of weak disorder trigger the delocalization transition
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Adapted from Szoldra et at (2024)
\(n_0\)
\(\Gamma \sim e^{-r/\zeta}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
10
thermal "bubble" with level spacing \(\delta \sim 2^{-n_0}\)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Adapted from Szoldra et at (2024)
Rare regions of weak disorder trigger the delocalization transition
\(n_0\)
\(\Gamma \sim e^{-r/\zeta}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
10
The spin can relax into the grain if the interaction does not resolve the spectral gap of the grain :
thermal "bubble" with level spacing \(\delta \sim 2^{-n_0}\)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Adapted from Szoldra et at (2024)
Rare regions of weak disorder trigger the delocalization transition
\(n_0\)
\(\Gamma \sim e^{-r/\zeta}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\zeta > \zeta_c\)
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
10
thermal "bubble" with level spacing \(\delta \sim 2^{-n_0}\)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Adapted from Szoldra et at (2024)
Rare regions of weak disorder trigger the delocalization transition
\(n_0\)
\(\Gamma \sim e^{-r/\zeta}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\zeta > \zeta_c\)
Studying avalanches in small systems : forcing bath or toy model
Luitz, Huveneers, De Roeck (2017),
Colmenarez, Luitz, De Roeck (2023), Sels (2022), Ha et al (2023)
Leonard et al (2023), Peacock et al (2023), Szoldra et al, (2024)
Suntajs & Vidmar (2022)
Pawlik et al (2024)
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
The spin can relax into the grain if the interaction does not resolve the spectral gap of the grain :
3
3
10
3
3
11
COLBOIS | INSTABILITIES AND MBL | 05.2025
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
11
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\epsilon\)
\(\epsilon_{\rm sp}\)
Colbois and Laflorencie (2023), Crowley and Chandran (2020)
3
3
11
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\epsilon\)
\(\epsilon_{\rm sp}\)
Colbois and Laflorencie (2023), Crowley and Chandran (2020)
\(h/J\)
\(h/J \gg 1 \)
\(\xi_{\mathrm{MBA}} \ll L \)
\(\Rightarrow\)
3
3
11
\(h\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
12
\(h\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
12
\(h\)
\(h^{\star}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
12
\(h\)
High energy, \( \epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
!
\(h^{\star}\)
\(h^{\star}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
12
\(h\)
High energy, \( \epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
!
\(h^{\star}\)
\(h^{\star}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
12
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
3
3
13
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
13
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
GOE = Ergodic
Poisson = localized
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
13
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
Kullback-Leibler divergence :
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
GOE = Ergodic
Poisson = localized
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
13
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
Kullback-Leibler divergence :
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Delocalized at strong enough interactions
GOE = Ergodic
Poisson = localized
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
13
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
Kullback-Leibler divergence :
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
GOE = Ergodic
Poisson = localized
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
13
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
14
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
14
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
14
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
14
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
14
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
15
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
15
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
15
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
15
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Another possible mechanism for instabilities:
resonances between more localized many-body states
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
3
3
16
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Another possible mechanism for instabilities:
resonances between more localized many-body states
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
\(r\)
3
3
16
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Another possible mechanism for instabilities:
resonances between more localized many-body states
\(r\)
\(r\)
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
\(\pm\)
Perturb away from very strong disorder
3
3
16
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Hints in several works but extremely challenging to characterize
Jacobi method
Demixing
QMI
Fictitious evolution
\(r\)
\(r\)
Phenomenological models
Relation to avalanches
Kjäll (2018)
Colmenarez et al (2019)
Villalonga and Clark (2020)
\(\pm\)
Crowley and Chandran (2020)
Garatt et al (2021)
Crowley and Chandran (2022)
Long et al (2023)
Ha, Morningstar and Huse (2023)
Morningstar et al (2022)
Perturb away from very strong disorder
Gopalakrishnan et al (2015)
Another possible mechanism for instabilities:
resonances between more localized many-body states
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
3
3
16
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
3
3
17
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
3
3
17
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
3
3
17
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
3
3
18
COLBOIS | INSTABILITIES AND MBL | 05.2025
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
3
3
18
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Aubry-André model
3
3
18
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Lukin et al, Science (2019)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Aubry-André model
Main theoretical works*:
3
3
18
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
*Other works focus on QMI / on weaker disorders / on time evolution
Lukin et al, Science (2019)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Correlations as a probe of the transition...
Aubry-André model
Pal & Huse, PRB (2010)
Lim, Sheng, PRB (2016)
Main theoretical works*:
*Other works focus on QMI / on weaker disorders / on time evolution
3
3
18
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
e.g. : Herviou et al (2019), Hemery et al (2022),Weiner et al (2019), Morningstar et al (2022)
Lukin et al, Science (2019)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Aubry-André model
Pal & Huse, PRB (2010)
Lim, Sheng, PRB (2016)
Localization lengths are short in MBL
Varma et al., PRB (2019)
Main theoretical works*:
3
3
18
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
*Other works focus on QMI / on weaker disorders / on time evolution
e.g. : Herviou et al (2019), Hemery et al (2022),Weiner et al (2019), Morningstar et al (2022)
Lukin et al, Science (2019)
Correlations as a probe of the transition...
COLBOIS | INSTABILITIES AND MBL | 05.2025
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Main theoretical works*:
Aubry-André model
Pal & Huse, PRB (2010)
Lim, Sheng, PRB (2016)
Localization lengths are short in MBL
Varma et al., PRB (2019)
Character of short-range distributions
Colmenarez et al, SciPost (2019)
3
3
18
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
e.g. : Herviou et al (2019), Hemery et al (2022),Weiner et al (2019), Morningstar et al (2022)
*Other works focus on QMI / on weaker disorders / on time evolution
Lukin et al, Science (2019)
Correlations as a probe of the transition...
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L\)
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Morningstar et al (2022)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L\)
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Morningstar et al (2022)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L\)
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Morningstar et al (2022)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L\)
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Morningstar et al (2022)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L\)
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Morningstar et al (2022)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L\)
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
3
3
19
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Morningstar et al (2022)
see e.g. Varma et al., PRB (2019)
Villalonga and Clark (2020)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
20
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
20
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(h = 5\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
20
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi^z_{\mathrm{bulk}} = 0.448 \pm 0.005\)
\(\xi^z_{\mathrm{mid}} = 0.449 \pm 0.003\)
\(\xi^x_{\mathrm{bulk}} = 0.87 \pm 0.01\)
\(\xi^x_{\mathrm{mid}} = 0.89 \pm 0.01\)
\(h = 5\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
20
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
20
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
Power-law
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
Power-law
Random state : XX
\(\bra{R} S_i^{+} S_j^{-} \ket{R}\)
\(= \sum_{s} a_s a_{\mathrm{flip}(s)}\) \(\propto \frac{ \sqrt{\mathcal{N}}}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
finite \(\xi_x\)
Power-law
Random state : XX
\(\bra{R} S_i^{+} S_j^{-} \ket{R}\)
\(= \sum_{s} a_s a_{\mathrm{flip}(s)}\) \(\propto \frac{ \sqrt{\mathcal{N}}}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
Random state : XX
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
finite \(\xi_x\)
Power-law
ZZ correlations dominate
\(\bra{R} S_i^{+} S_j^{-} \ket{R}\)
\(= \sum_{s} a_s a_{\mathrm{flip}(s)}\) \(\propto \frac{ \sqrt{\mathcal{N}}}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
ZZ correlations dominate
Random vector
XXZ, \(h = 1, \Delta = 1\)
finite \(\xi_x\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
3
3
21
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_{\mathrm{MBA}}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
22
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
ZZ correlations dominate
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
22
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
\(\xi_x \approx 2 \xi_z\)
XX correlations dominate
ZZ correlations dominate
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
22
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(h/J \)
\(\Delta/J\)
\(\xi_x \approx 2 \xi_z\)
XX correlations dominate
ZZ correlations dominate
Inversion !
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
22
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
23
COLBOIS | INSTABILITIES AND MBL | 05.2025
Extrapolated \(h_c\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
23
COLBOIS | INSTABILITIES AND MBL | 05.2025
Extrapolated \(h_c\)
\(\xi_x > \xi_z\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
23
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\xi_x > \xi_z\)
Inversion
Extrapolated \(h_c\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
23
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\xi_x > \xi_z\)
Inversion
Extrapolated \(h_c\)
\(\xi_z \rightarrow \infty\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
23
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\xi_x > \xi_z\)
Inversion
Extrapolated \(h_c\)
\(\xi_z \rightarrow \infty\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
24
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\xi_x > \xi_z\)
Inversion
Extrapolated \(h_c\)
\(\xi_z \rightarrow \infty\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
24
\(\Delta/J\)
\(h/J \)
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
25
\(\Delta/J\)
\(h/J \)
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
25
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
26
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
26
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
26
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
26
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
3) Deep MBL
MBL and AL are connected from the point of view of correlations \(\xi_z, \xi_x\) at weak interactions
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
26
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
4) Instabilities of the correlation length : what do they probe ?
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv (2025)
3) Deep MBL
MBL and AL are connected from the point of view of correlations \(\xi_z, \xi_x\) at weak interactions
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
26
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
4) Instabilities of the correlation length : what do they probe ?
3) Deep MBL
MBL and AL are connected from the point of view of correlations \(\xi_z, \xi_x\) at weak interactions
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv (2025)
3
3
26
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
Anderson
No growth
of entanglement
J. H. Bardarson, F. Pollmann, and J. E. Moore, PRL 109, 017202 (2012)
M. Znidaric, T. Prosen, and P. Prelovsek PRB 77, 064426 (2008)
Log growth
of entanglement
Initial \(S^z\) basis random product state
+
TEBD
W = 5
D. Luitz, N. Laflorencie, F. Alet (2016)
Sierant and Zakrewski (2022)
Some eigenstate
J. C., N. Laflorencie, PRB (2023)
\(|\langle S_i^{z}\rangle| < 1/2\)
Anderson chain / XX chain
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
Toy model:
SPIN FREEZING !
CHAIN BREAKING !
Macé et al (2019)
Colbois, Alet, Laflorencie (2024)
De Roeck & Huveneers 2017, Luitz, De Roeck & Huveneers 2017, Thiery et al 2018; Crowley and Chandran 2020
Condition for spin at \(r\) to relax thanks to the grain:
Avalanche criterion:
Question:
Does the seed hybridize (absorb) the l-bits?
Answer: it depends on
(1) \(V_{ij}\) the matrix element coupling the seed to the l-bit
(2) \(1/ \rho\) the level spacing.
Typically \(V_{ij} \gg 1/\rho\).
The challenge is to quantify this, see Crowley and Chandran.
DEEP MBL :
COLBOIS | INSTABILITIES AND MBL | 05.2025
Model : t-V with usual XXZ units, except V = 2t
COLBOIS | INSTABILITIES AND MBL | 05.2025